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1 Introduction

Text-to-speech (TTS) systems, built to generate a natural and emotional voice from a given text, have
received lots of attention in recent years due to the great advances of deep generative models [39].
However, most TTS systems were tailored from a single-speaker voice. There is still significant
interest in any-speaker adaptive TTS within few-/zero-shot scenarios because of the high price of
gathering customer voice data in the real world. In this work, we want to build a model to mimic
target speakers’ styles with a few reference voices of a specific speaker, which are unseen during
training.

Most methods in style transfer TTS focus on extracting the style vector from the reference voice and
combining it with the phoneme embedding to generate styled mel-spectrograms, which would be
input into the vocoder later [36, 43, 16]. To solve the few-/zero-shot problem, meta-learning is also
applied in some works [28, 14]. But the generated voice quality of the meta-learning model is still at
a low level.

Recently, due to the huge progress made by diffusion methods in image generation, there are also
some works that proposed diffusion-based methods in any-speaker adaptive TTS [17, 18]. Although
they outperform some previous methods, here we argue that those diffusion-based methods in any-
speaker adaptive TTS still get some limitations. Firstly, they ignore modal gap in TTS. Unlike image
generation which keeps the modal unchanged in input and output, in TTS, the model aims to generate
corresponding speech according to the given text. Intuitively, that process involves modal transfer
from text to speech and needs more detailed mechanism designs to serve as guidance. However,
current works ignore that difference and apply the diffusion directly to the existing TTS architecture.
Additionally, all the current diffusion-based TTS methods first sample white Gaussian noise and use
the text and reference speech information to guide the restoration. That process always needs a large
step size thus causing efficiency problems in both training and inference.

In this work, we propose Diff Transferer and leverage the recent advances in shallow diffusion
mechanism [24] and controllable diffusion process [21] to solve the above problems. As Figure 1
shows, With the shallow diffusion mechanism applied, our model can transfer the speech generated
by the TTS backbone into the target speaker’s voice in several steps. Also, we propose two novel
losses in the diffusion process to fuse the text and speech information into mel-spectrograms more
smoothly.

Specifically, we want to use a style discriminator and a content discriminator to start generation at
a shallow step smaller than the total number of diffusion steps. In this way, we can find a stage in
which the style is masked while maintaining the content unchanged, which means decoupling style
and text. Then we reverse the process to get a route from one speaker to another, similar to a diffusion
GAN model [44].

Additionally, since an evaluation for cloning one’s voice is hard to get, using the cosine distance
between two speaker embeddings as the index of reference [17] would largely rely on the performance
of the extracting model. The better your speaker embedding, the better evaluation or loss function you



can get. So in this work, we follow the previous works [28] to train our generator and discriminator
simultaneously, which is the idea of GAN.

So given a text and some reference voices, we can first use FastSpeech 2 [32] as our base TTS model
architecture to generate a mel-spectrogram with the input text as our original speaker. Then based on
the reference voice, our Diff-Style Transferer would adapt its parameter in the diffusion model and
transfer the original voice to the target one.

2 Literature Survey

2.1 Diffusion Model

In TTS tasks, deep generative models, e.g., GAN [6, 10, 11], VAE [34, 19, 8], normalizing flow
[7, 33, 20], and diffusion models [35, 13, 26], have been widely used and shown great potential.
Here we mainly introduce the theory of diffusion probabilistic model [37, 12]. With the probabilistic
diffusion model, we can gradually convert the raw data into Gaussian distribution by adding noise and
then learns the reverse process to restore the data from Gaussian white noise or some intermediate
states. For the forward and backward process, [38] proposes a unified framework that further extends
the capabilities of score-based generative models through stochastic differential equations (SDEs)
and ordinary differential equations (ODEs). Based on the idea of mapping a uniform distribution
on a high-dimensional hemisphere into any data distribution, [45] leverages the concept of the
electromagnetic field in physics and proposes a new “Poisson flow” generative model.

There are some works that apply the diffusion model to post-process the generated mel-spectrograms
in the style transfer TTS tasks. [17, 18] However, as we mentioned in Section 1, all of those methods
get limitations due to the modal gap and efficiency problems. To solve those problems, we propose
Diff Transferer, a shallow diffusion-based style transfer TTS model with a controllable diffusion
process.

2.2 Few-/Zero-shot Style Transfer TTS

In few-shot and zero-shot TTS tasks, a popular and effective approach is fine-tuning the model
with a few audio samples of the target speaker based on a pre-trained model [4, 1, 3]. However,
audio samples and corresponding transcripts of the target speakers are hard and expensive to gather.
Additionally, hundreds of fine-tuning steps are required in that method, limiting its applicability to
real-world scenarios.

Another approach is to extract a latent vector from given reference speech audio that represents the
style of this audio, such as speaker identity, prosody, and emotion [36, 43, 16]. But these methods
show low adaptation performance on new speaker problems since they heavily rely on the diversity
of the speakers in the training dataset.

Meta-learning [40], or learning to learn, has been widely used in a series of few-/zero-shot tasks and
achieved promising performance. There are also some works that try to adopt Meta-Learning in TTS.
[29] introduce an approach in multi-lingual speech synthesis with meta-learning and improve the
quality of the synthesized sound successfully even with less training data. [25] apply model-agnostic
meta-learning (MAML) algorithm [9] in emotional style transfer to pre-trained a TTS model, which
is highly sensitive to the few-sample adaptation. Following them, [14] also use MAML in the multi-
speaker adaptation and achieve great performance with few training samples. Also, [28] propose a
new TTS model with meta-learning that could synthesize high-quality voice and adapt to the new
speakers smoothly. Besides, [17] combines the diffusion model with meta-learning to deal with the
few-shot problem.

In this work, we follow previous works and adopt the diffusion method in any speaker adaptive TTS
and make adjustments at both model architecture and loss to make the diffusion fit better into the
TTS task.
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Figure 1: Overview architecture of our proposed Diff-Transferer

3 Proposed Method

3.1 DDPM Sampling

In the forward process of DDPMs [12] q(xt|xt−1), we continually add Gaussian noise to a clean
speech x0 ∼ q(x0) at every time step t:

q(xT |x0) :=

T∏
t=1

q(xt|xt−1), where q(xt|xt−1) := N(xt;
√

1− βtxt−1, βtI) (1)

Where {β}Tt=0 is a variance schedule to control the ratio of the original content and added noise. In
practice, we rewrite the formulation and make the forward process’s sampling in one step:

xt =
√
ᾱtx0 +

√
1− ᾱtϵ, where ϵ ∼ N(0, I) (2)

Here αt := 1− βt and ᾱt :=
∏t

s=1 αt. It should be noticed that the reversed step of the forward pro-
cess q(xt−1|xt) is intractable, so DDPM learns to maximize its variational lower bound pθ(xt−1|xt)
alternatively. Thus the reverse process can be formulated as another Markov chain with learned mean
and fixed variance:

pθ(x0:T ) := pθ(xT )

T∏
t=1

pθ(xt−1|xt), where pθ(xt−1|xt) := N(xt−1;µθ(xt, t), σ
2
t I) (3)

and

µθ(xt, t) :=
1

√
αt

(xt −
1− αt√
1− ᾱt

ϵθ(xt, t)) (4)

We can get the ϵθ(xt, t)) by optimizing the below objective:

min
θ

L(θ), where L(θ) := Et,x0,ϵ[||ϵ− ϵθ(
√
ᾱtx0 +

√
1− ᾱtϵ)||2] (5)

After Training, we can conduct a reverse diffusion process and sample from pθ(xt−1|xt) using:

xt−1 = µθ(xt, t) + σtϵ =
1

√
αt

(xt −
1− αt√
1− ᾱt

ϵθ(xt, t)) + σtϵ (6)
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3.2 Conditional diffusion with Manifold Constraints

In the DDPM sampling process, we have a discrete form, as shown below

xi = aix0 + biz, z ∼ N (0, I) (7)

xi−1 = f (xi, sθ∗) + g (xi) z, z ∼ N (0, I) (8)

where f(x,t) represents drift coefficient, g(t) represents diffusion coefficient, and Sθ∗ is the trained
score function.

And we want to apply a projection measurement y to retrieve the unknown x:

y = Hx+ ϵ, y ∈ Rm,H ∈ Rm×n (9)

Following equation 7,8, we can rewrite our Projection-based measurement constraint sample process
in this form:

x′
i−1 = f (xi, sθ) + g (xi) z, z ∼ N (0, I) (10)

xi−1 = Ax′
i−1 + bi, where A, bi are functions of H,y, and x0 (11)

With Bayes Rule ∇x log p(x | y) = ∇x log p(x) +∇x log p(y | x) and Tweedie’s formula, after
replacing the equation 10 with a new score function, we can get:

x′
i−1 = f (xi, sθ)− α

∂

∂xi
∥W (y −Hxi)∥22 + g (xi) z, z ∼ N (0, I) (12)

From equation 12, we can add conditional loss to guide the diffusion sample process to do the style
transfer, as shown in equations 16-19.

3.3 Shallow Diffusion Mechanism

Inspired by [24], we can leverage fastspeech2 to generate a speech with given target text and follow
the forward process in diffusion until the mel-spectrogram is style-agnostic. In this way, we can make
better use of the prior knowledge and reach a state where the style of the mel-spectrogram is mostly
disentangled and ready to add the target style. As shown in Figure 2, we use a style discriminator to
extract the style embedding and compute their cos-distance to judge whether the style is the same
as the source input at the t step. We stop the forward process once the state is reached to shallow
the diffusion. Since the generating voice from fastspeech2 would probably have the same style, the
shallow t-steps could be set as a hyperparameter. Here, a phoneme discriminator is also used if we
input a different text instead of the target one.

Figure 2: Forward Process until Style-agnostic
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3.4 Style Loss

CLIP Loss for style translation

The style discriminator predicts whether the speech follows the style of the target speaker. We follow
[28] to design the style discriminator, comprising Spectral processing, Temporal processing, and
Multi-head self-attention with a set of style prototypes S = {si}Ki=1. Here, si ∈ RN means the style
prototype for the ith speaker, and K is the number of speakers in the training set. We input the style
embedding ws ∈ RN , and the style prototype is learned by the following classification loss (13).

Lcls = − log
exp

(
wT

s si
))∑

i′ exp (w
T
s si′)

(13)

With the trained Style discriminator Ds, we can extract the style embedding from the mel-
spectrograms and compare their similarity with cos-distances in (14).

ℓclip (Xtar,Xt) := − sim (Ds (Xtar) , Ds(Xt)) (14)

Content Loss for style translation

Since the two inputs here are different data types, we design a multi-modal phoneme discriminator
with contrast learning to find a connection between the phoneme and mel-spectrograms. In (15), Ep

Em are the encoders of phoneme and mel-spectrograms.

ℓtext (Xtar,Xt) := − sim (Ep (T tar) , Em(Xt)) (15)

Figure 3: Backward with Manifold Constraint

3.5 Total Loss

The final loss for the transfer reverse diffusion is given by the following equation.

ℓtotal = λ1ℓclip + λ2ℓtext (16)

In the backward process, we leverage the total loss as in [21] to sample:

x′
t−1 =

1
√
αt

(
xt −

1− αt√
1− ᾱt

ϵθ (xt, t)

)
+ σtϵ (17)

xt−1 = x′
t−1 −∇xtℓtotal

(x̂0 (xt)) (18)

where x̂0 (xt) refers to the estimated clean image from the sample using the Tweedie’s formula [5].
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x̂0 (xt) :=
xt√
ᾱt

−
√
1− ᾱt√
ᾱt

ϵθ (xt, t) (19)

4 Experiments Setting

4.1 preliminary results

We have reproduced the code in Fastspeech2, Diffsinger, and the Meta-Stylespeech.

4.2 Datasets/Corpus

• LibriTTS[46]: a multi-speaker English corpus, which is derived from the audio and text
materials of the LibriSpeech[30] corpus. The corpus of LibriTTS consists of 585 hours of
English speech data at a 24kHz sampling rate from 2,456 speakers and their corresponding
texts.

• VCTK[41]: includes speech data uttered by 110 English speakers with various accents.
Each speaker reads out about 400 sentences, which were selected from a newspaper, the
rainbow passage, and an elicitation paragraph used for the speech accent archive. All
recordings were converted into 16 bits, were downsampled to 48 kHz, and were manually
end-pointed.

• LJSpeech[15]: a public domain speech dataset consisting of 13,100 short audio clips of a
single speaker reading passages from 7 non-fiction books. A transcription is provided for
each clip. Clips vary in length from 1 to 10 seconds and have a total length of approximately
24 hours.

• ESD[47]: an Emotional Speech Database for voice conversion research. The ESD database
consists of 350 parallel utterances spoken by 10 native English and 10 native Chinese
speakers and covers 5 emotion categories (neutral, happy, angry, sad and surprise). More
than 29 hours of speech data were recorded in a controlled acoustic environment. The
database is suitable for multi-speaker and cross-lingual emotional voice conversion studies.

• Opencpop[42]: a publicly available Chinese Mandarin singing corpus designed for singing
voice synthesis. The corpus consists of 100 popular Mandarin songs performed by a female
professional singer. Audio files are recorded with studio quality at a sampling rate of 44,100
Hz and the corresponding lyrics and musical scores are provided. All singing recordings
have been phonetically annotated with phoneme boundaries and syllable (note) boundaries.

4.3 Data Preprocessing

To begin with, we split the dataset into a training set and a validation set correspondingly. Text
sequences are converted into phoneme sequences [23], which serve as input. Then, an audio is
downsampled to 16kHz, the leading and trailing silence are also trimmed with Librosa[27]. A
spectrogram is extracted with a FFT size of 1024, hop size of 256, and windowsize of 1024. Then, the
spectrogram is converted to a mel-spectrogram with 80 frequency bins. Additionally, ground-truth
pitch and energy are averaged by duration, to phoneme-level ones.

4.4 Baselines

Below are some of the baseline models for comparison.

• GT (oracle): a ground truth speech.
• GTmel (oracle): a speech synthesized by MelGAN vocoder using Ground-Truth mel-

spectrogram.
• StyleSpeech[28] a model which generates multi-speaker speech from a single speech audio

with the style-adaptive layer normalization and the mel-style encoder.
• Meta-StyleSpeech[28]: a zero-shot any-speaker adaptive model based on the meta-learning,

which is an extension of StyleSpeech, with two additional discriminators to guide the
generator.
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• YourTTS[2]: a zero-shot any-speaker adaptive model based on the flow-based model[18].

• Grad-TTS[31]: a model that modifies the Grad-TTS into the any-speaker version.

• Styler[22]: a non-autoregressive TTS framework with style factor modeling that achieves
rapidity, robustness, expressivity, and controllability at the same time.

4.5 Evaluation

Following previous works, we choose both automatic and manual evaluation metrics to prove the
effectiveness of our model:

• Speaker Embedding Cosine Similarity (SECS): a indication of the similarity between two
speaker embeddings.

• Mel-cepstral Distortion (MCD): the compatibility between the spectra of two audio
sequences.

4.6 Evaluation on Trained Speakers

In this experiment, we test our model by directly using the samples in the testing set corresponding to
the dataset we use to train our model. The speakers of those samples have been seen by the model
during the training stage.

4.7 Unseen Speaker Adaptation

In this experiment, we aim to evaluate our model’s transfer ability to unseen speakers. Specifically,
we use another dataset within which the speaker of each sample is unavailable to the model during
the training stage. By doing so, we hope to test our model’s robustness and generalizing ability in the
zero-shot scenario.

For both evaluations, we compare our model with baseline models in the following aspects:

• The quality of speech (using MOS).

• The similarity between synthesized speech for seen speakers and the reference speech (using
SECS, CER, SMOS, and MCD).

5 Results and Conclusion

5.1 Hyperparameters

We sampled the LibriTTS dataset tracks at 22.05 kHz for the hyperparameters of audio signal
processing. Each audio input is a 4 to 14 seconds audio segment, each with one sentence randomly
chosen from the training set. We applied STFT and mel-filter-bank to convert audio components into
STFT spectrograms, then to mel-spectrograms. The window size is 1024, the hop size is 256, and the
number of mel bins is 80. Figure 4 shows the pipeline’s learning rate and phoneme, sentence, and
word duration loss.

For hyperparameters of the training paradigm, we trained the model with 4 NVIDIA RTX 3090Ti
GPUs with 16 batch size. We adopted the Adam optimizer with a 10−3 learning rate. The total time
to train the singing voice synthesis model of 160 steps is around 24 hours until the model converges.

The loss function for converging the model is the same as our optimization target, the L1-Norm loss
between the estimated mel-spectrogram and the ground truth mel-spectrogram.

Figure 5 shows the training mel loss on two training pipelines and the generative loss on Hifi-Gan
Vocoder. From the loss, we can see the mel-spectrogram predict model fits well and contains most
of the information as shown in figure 7. But the Hifigan model’s loss is still high, which means the
vocoder does not work very well, as shown in the demo. We also tried fine-tuning a pre-trained model
on our LibriTTS dataset to get another vocoder. However, it still contains some noise in the generated
voice, and we later would introduce some extra conditions to train a better vocoder.
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Figure 4: (a) The learning rate on training gradually declines. (b) The phoneme duration loss. (c) The
sentence duration loss. (d) The word duration loss.

5.2 Training Results

From figure 7, the predicted f0 curve does not fit well in some minor parts. Thus, some details may be
lost in the predicted mel-spectrogram. Besides, due to the target being to minimize the l1 loss in the
model, the converging is not smooth to generate some details as the ground truth. Later multi-scale
mel-spectrogram loss would be introduced to improve the performance. From figure6, we can see the
style loss and phoneme loss during the training fluctuate within a specific range.

Figure 5: (a) The mel-loss on TTS model in the pipeline. (b) The mel-loss on shallow diffusion
process in the pipeline. (c) The mel-loss on Diff-singer in the midi-b pipeline. (d) The total generative
loss on Hifi-Gan Vocoder.
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Figure 6: (a) The style-loss on style discriminator. (b) The phoneme loss on phoneme discriminator.

5.3 Conclusion and Future Work

We have proposed a new pipeline for an any-speaker adaptive TTS model, which achieves a relatively
good result in our final project. But it still requires a TTS backbone. The way to first generate a
voice and then convert is not efficient. Both the training and inference are still slow. Maybe we
can combine the transfer process in the middle of any speaker adaptive TTS in the future. Besides,
the evaluation is still lost. Although compared with any adaptive speaker, it seems reasonable, the
quality and the copy are still not high. Maybe we can evaluate the speaker style similarity between
two voices better instead of comparing the cos distance in pertained Speaker Verification models.
Moreover, we can leverage meta-learning to improve our models, transfer emotion, or even sing voice
or techniques later.

(a) ground-truth (b) predict output

Figure 7: The compare for ground-truth and predict mel spectrogram of the sentence "oh come ye
oh come ye to Bethlehem" in midi-a pipeline, including f0 curve (white line) and duration curve
(phoneme with blue line).
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