
Recent NLP Area Analysis with Postgresql and Neo4j

Dawei Li, Ruihan Wang, Jinhe Wen 2022.12.8

Overview

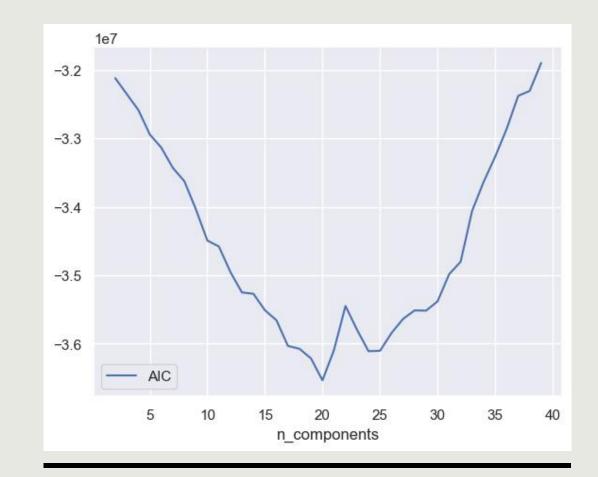
Data Crawling

- Dataset: NLP Paper Dataset
 - Papers in the three top conference(ACL, EMNLP, NAACL) of NLP area
 - ACL Anthology ACL Anthology
- SemanticScholar API
 - Semantic Scholar Academic Graph API | Semantic Scholar
 - paper search, paper lookup, author lookup ...
- Crawling
 - Scrapy
 - Mongodb

Keyword Extraction

- Extract keywords from abstracts
 - KeyphraseVectorizers package in Python
 - Filter the extracted keywords

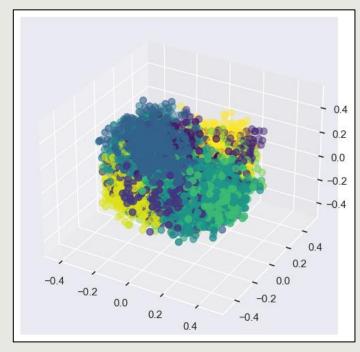
Abstract:


Existing commonsense knowledge bases often organize tuples in an isolated manner, which is deficient for commonsense conversational models t o plan the next steps. To fill the gap, we curate a large-scale multi-turn human-written conversation corpus, and create the first Chinese c ommonsense conversation knowledge graph which incorporates both social commonsense knowledge and dialog flow information. To show the potent ial of our graph, we develop a graph-conversation matching approach, and benchmark two graph-grounded conversational tasks.

Keywords:

[('first chinese commonsense conversation knowledge graph', 0.8351), ('conversation corpus', 0.6502), ('conversation matching approach', 0.5 647), ('conversational models', 0.5639), ('commonsense knowledge bases', 0.5452)]

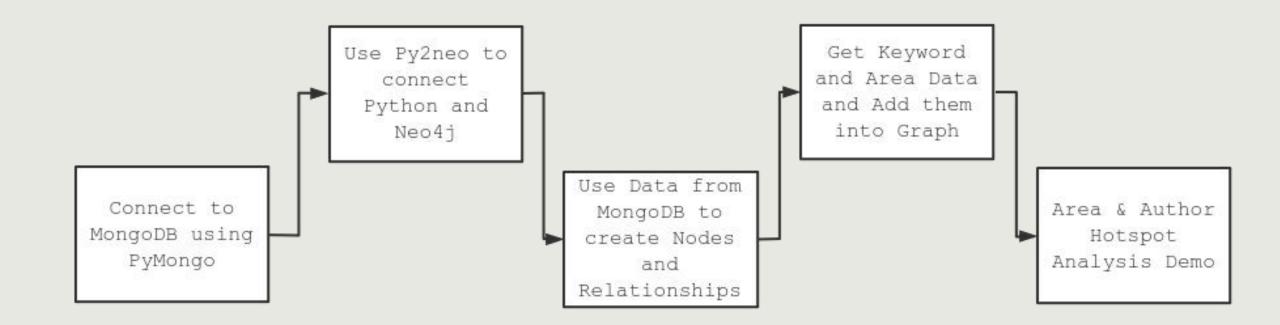
Area Extraction


- Clustering keywords to get research areas
 - Sentence-transformer to encode each keyword
 - Gaussian Mixture Model (GMM)
 - AIC matrix to decide the best clustering number

Area

Extraction

• Clustering result visualization


['fluent response generation', 'neural dialogue systems', 'chat style dialogue', 'persuasion conversations', 'conversation goals', 'effective dialogue representations', 'bot conversations', 'dialog responses', 'training dialogue policies', 'augmented dialogues', 'shot dialogue state tracking', 'neural dialog models', 'spoken dialog representations', 'psychotherapy conversations', 'utterance prediction', 'speaker sensitive response evaluation model', 'dialog dataset', 'domain chatbots', 'dialogue response ranking training',

Neo4j:

Py2neo Focus on Area Hotspot

Overview

Nodes and Relationships

self.g.create(paper_node)

rel = "wrote"

paper_author_rel = Relationship(author_node, rel, paper_node, rank=i+1)
self.g.create(paper_author_rel)

Plugin:	apoc
	<u></u>

nodeLabel	nodeCount
Paper	33441
Author	7657
Area	17
Keyword	7433
Affiliation	619

labelCount	5
relTypeCount	6
propertyKeyCoun t	29
nodeCount	49167
relCount	128018

nodeRel	relCount
(:Author)-[:works in]->()	1327
()-[:belongs to]->(:Area)	7433
(:Author)-[:cooperate]->()	26071
(:Keyword)-[:belongs to]->()	7433
()-[:belongs to]->()	7433
()-[:is about]->()	9819
()-[:cited by]->(:Paper)	70865
(:Paper)-[:cited by]->()	70865
(:Paper)-[:is about]->()	9819
()-[:cited by]->()	70865
()-[:cooperate]->(:Author)	26071
()-[:works in]->(:Affiliation)	1327
()-[:is about]->(:Keyword)	9819
()-[:wrote]->(:Paper)	12503
()-[:works in]->()	1327
()-[:cooperate]->()	26071
()-[:wrote]->()	12503
(:Author)-[:wrote]->()	12503

Area Hotspot: Count

Area Hotspot: from Authors and Citations

- Author Influence (paperCount, citation, hindex)
 - Rank: First author, second author,..., giving a weight
 - Sum & Mean
- Citation Influence (citation, influentialCiatation)

Area Society and Application Multilingual and Translation	PaperCount 1269 952	Author_pap 44487.7 41286.2	Author_cit 1832110.4 1887046.8	Author_hIn 12876.4 10763.1	Cit_cit 299077 297052	Cit_inf 41518 40843
Model Architecture	1043	38531.7	1653270.7	10703.1	451452	59929
Natural Language Understanding	710	29937.1	1087900.9	7709.4	248842	38991
Dialogue	729	28350.1	1104618.4	7269.5	104969	14930
Learning Paradigma	660	25733.5	976093	6794	122727	17700
Text Mining and Retrival	575	24039.1	788652	6009.1	123804	18050
Language Model	488	21576.3	875113.7	5360.2	203235	29959
Linguistics	534	20778.2	809326.2	5596.7	71087	9517
Relation Extraction	520	18215.6	578695.2	5031.9	86084	13132
Knowledge Graph	516	17492.2	540012.6	5000.6	88660	12034
Grammar and Syntax	324	14194.1	514027.8	3507.6	47074	7250
Multi-modal	320	13677.9	461104.7	3150.1	42579	5702
Text Generation	327	12792	468861.9	3592.4	53035	7455
Summarirzation	289	10505.8	539588.9	2979.1	166181	22417
Representation Learning	265	9411.2	322466.8	2491.9	49281	6720
Sentiment Analysis	298	9370.7	238960.9	2489.8	31401	3782

Who is the NLP Star ! --Plugin: GDS --Centrality

Node: Author

Relationships: cooperate

Order by Score DESC

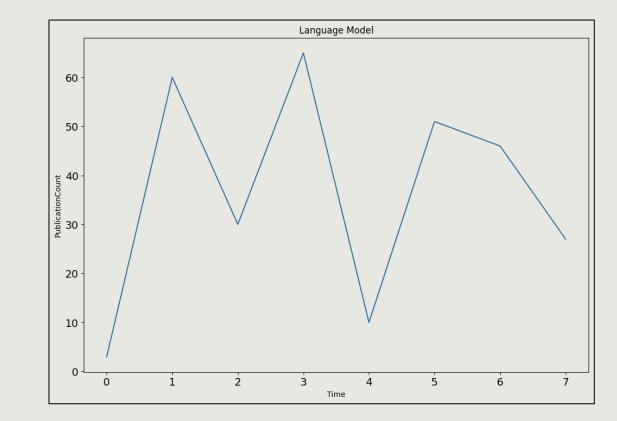
- Project a graph
- Memory Estimation
- Stream

	nodeCount	relations	hipCount	bytesMin	bytesMax	requiredMemory
Θ	7657		26071	185520	185520	181 KiB
		author	scor	e		
Θ		Ming Zhou	13.17502	6		
1	Y	/ejin Choi	12.53250	5		
2	Luke Ze	ettlemoyer	11.93077	1		
3	Na	anyun Peng	11.51189	6		
4		D. Roth	9.93123	2		
				•		
9	5 Clen	nent Chung	3.55755	9		
9	6 Shrimai F	Prabhumoye	3.554349	9		
9	7 Veselir	n Stoyanov	3.53398	2		
9	8 Paol	o Papotti	3.53228	9		
9	9 Pe	ercy Liang	3.52646	7		

Postgresql:

Psycopg2 Focus on Time Aggregation Analysis & Potential Analysis

Postgresql Schema

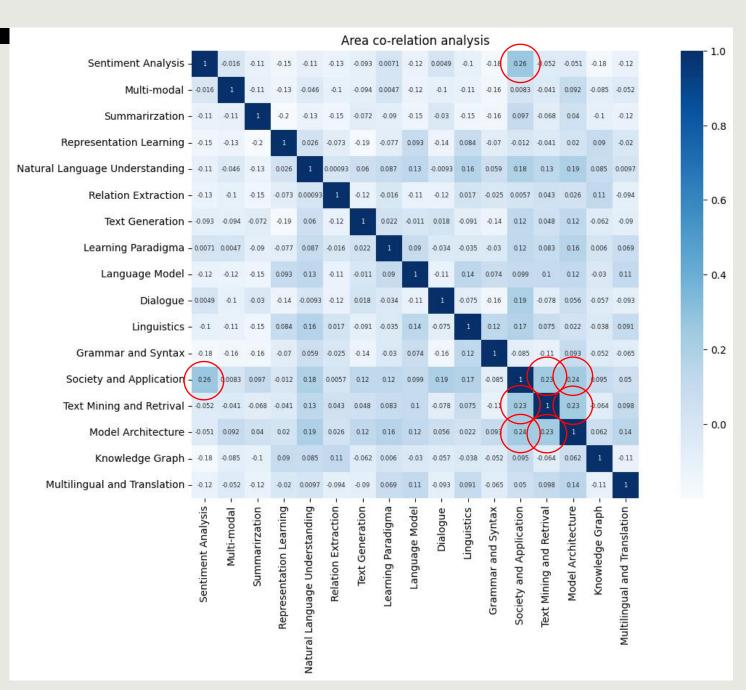

- Design principle
 - Reduce redundant information
 - Highly coupled inside tables
 - Minimize join operations
- Tables
 - paperInfo
 - AuthorInfo

```
create table paperInfo(
    paperId
                      PRIMARY KEY,
   title
    abstract
    year
   referenceCount
                     integer,
   citationCount
                    integer,
   influentialCitationCount
                     date,
   authorsId text [].
   keywords
               text [],
           text []
   area
create table authorInfo(
   authorId text
                       PRIMARY KEY,
   name
            text [],
   aliases
   affiliations
                   text [],
   paperCount
                 integer,
   citationCount
                    integer,
             integer
```

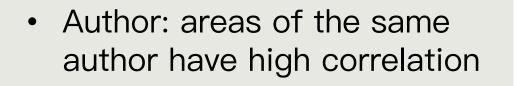
Time-related Area Analysis

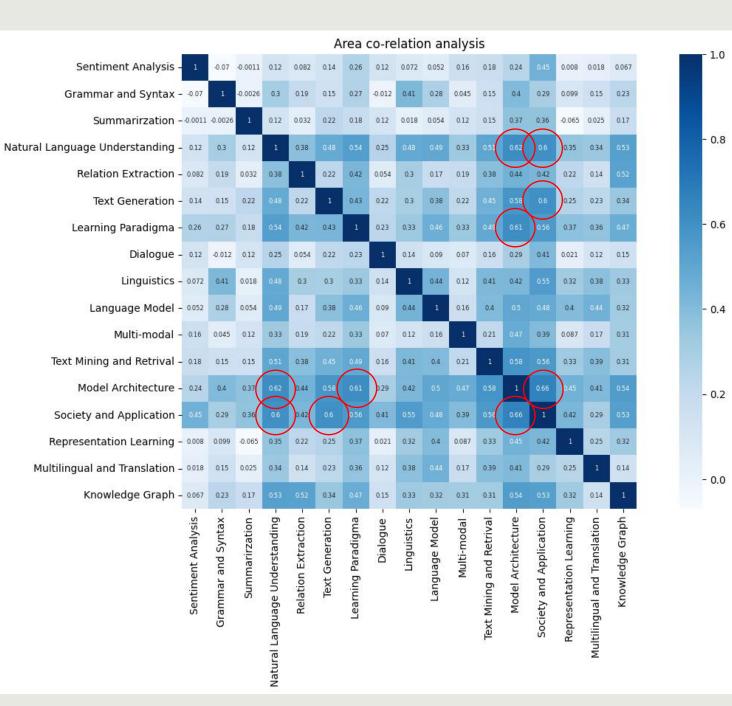
- Analyze the change in the popularity of different areas over time
 - Time interval: quarterly
 - Metirc: paperCount

```
Iselect year, q, count(*) from
    (select *,
        ceil((split_part(text(publicationDate),'-',2))::numeric/3)as q
    from paperInfo) as p
    where 'Language Model' = any(area)
    group by year, q
    jorder by (year, q);
```



Area Correlation Analysis


- Analyze correlations between different areas
 - Paper: areas of the same paper have high correlation
 - Author: areas of the same author have high correlation


select p1.a, p2.a, <i>count</i> (*) from
(select title, unnest(area) as a from paperInfo) as p1 join
<pre>(select title, unnest(area) as a from paperInfo) as p2</pre>
on p1.title = p2.title
group by pl.a, p2.a;

<pre>Jselect p1.a, p2.a, count(*) from</pre>
) (select title, aId, <i>unnest</i> (area) as a from
(select title, area, unnest(authorsId) as aid from paperInfo) as temp1) as p1 join
) (select title, aId, <i>unnest</i> (area) as a from
(select title, area, unnest(authorsId) as aid from paperInfo) as temp2) as p2
on p1.aId = p2.aId
]group by p1.a, p2.a;

 Paper: areas of the same paper have high correlation

Potential Author Analysis

group by authorId, name

order by paperCnt desc

limit 4;

iselect authorId, name, count(*) as paperCnt from

paperInfo on newAuthor.authorId = any(paperInfo.authorsId)

- Analyze potential and promising researchers in the NLP field
 - They don't have to be famous scholars

paperCount < 20 & citationCount<300</pre>

• Metircs

•

 Paper count of their publication

Citation count of

their publication

select authorId, name, sum(paperInfo.citationCount) as citationCnt from
 (select * from authorInfo where paperCount < 20 and citationCount < 300) as newAuthor join
 paperInfo on newAuthor.authorId = any(paperInfo.authorsId)
group by authorId, name
order by citationCnt desc
limit 4;</pre>

(select * from authorInfo where paperCount < 20 and citationCount < 300) as newAuthor join

Potential Author Analysis

• Paper count of their publication

• (Citation	count	of t	heir	publication
-----	----------	-------	------	------	-------------

	authorld	name	paperCount
0	2065965333	Ivan Titov	6
1	72436283	Li Zhang	5
2	1830448175	Hongshen Chen	5
3	1845230025	Sudha Rao	5

	authorld	name	ciatationCount
0	65826567	Martin Josifoski	224
1	2111070044	Yuchen Ding	213
2	2145734278	Xin Zhao	213
3	152859769	Goutham Ramakrishnan	206

Potential Direction Analysis

• Analyze potential and emerging research direction in the NLP field

Metric: gap of the keyword frequency

```
iselect keyword, max(keywordCnt::double precision/totalCnt::double precision) - min(keywordCnt::double precision/totalCnt::double precision) as frequencyGap
from (select year, q, (year, q) as time, unnest(keywords) as keyword, count(*) as keywordCnt from
    (select *, ceil((split_part(text(publicationDate),'-',2))::numeric/3) as q from paperInfo) as temp1
    group by year, q, keyword)
    as keywordExtracted join
    (select (year, q) as time, count(*) as totalCnt from
    (select *, ceil((split_part(text(publicationDate),'-',2))::numeric/3) as q, unnest(keywords) as keyword from paperInfo) as temp2
    group by year, q
    ) as keywordTotal on keywordExtracted.time = keywordTotal.time
where keywordExtracted.year >= 2020
group by keyword
order by frequencyGap desc
(timit 10
```

Potential Direction Analysis

	keyword	frequencyGap
0	natural language inference	0.104394
1	efficient federated learning framework	0.103524
2	neural machine translation	0.100146
3	question answering	0.059205
4	translation performance	0.052122
5	entity alignment	0.052122
6	translation quality	0.051969
7	entity recognition	0.050439
8	sequence pretraining	0.049854
9	contextual embeddings	0.042982

Summary

- Data collection Data Extraction Question orientated analysis
- Focus:
- 1. NLP research areas:

Author influences, Citation influences, Time trends, Inner correlation, Frequency changes (in keywords)

2. NLP popular authors:

Beyond existed factors: cooperation frequency, predictions based on years data

• To Continue: More years, more properties, more Data Science

Thanks for Listening!

Also, our most sincere gratitude to *Prof. Gupta TA Ms. Kalyani Bhade*

Dawei Li, Ruihan Wang, Jinhe Wen Dec 8, 2022